Chapter 1: Knowing Our Numbers

Exercise 1.1

Question 1:

Fill in the blanks:
a) 1 Lakh = \qquad Ten thousand
b) 1 Million $=$ \qquad Hundred thousand
c) 1 Crore = \qquad Ten lakh
d) 1 Crore = \qquad Million
e) 1 Million = \qquad Lakh

Answer 1:

a) 1 Lakh $=\underline{10}$ Ten thousand 1,00,000
b) 1 Million $=\underline{10}$ Hundred thousand 10,00,000
c) 1 Crore $=\underline{10}$ Ten lakh

1,00,00,000
d) 1 Crore $=\underline{10}$ Million

1,00,00,000
e) 1 Million $=\underline{10}$ Lakh

1,000,000

Question 2:

Place commas correctly and write the numerals:
a) Seventy-three lakh seventy-five thousand three hundred seven.
b) Nine crore five lakh forty-one.
c) Seven crore fifty-two lakh twenty-one thousand three hundred two.
d) Fifty-eight million four hundred twenty-three thousand two hundred two.
e) Twenty-three lakh thirty thousand ten.

Answer 2:

a) $73,75,307$
b) $9,05,00,041$
c) $7,52,21,302$
d) $58,423,202$
e) $23,30,010$

Question 3:

Insert commas suitable and write the names according to Indian system of numeration:
a) 87595762
b) 8546283
c) 99900046
d) 98432701

Answer 3:

a) $8,75,95,762=$ Eight crore seventy-five lakh ninety-five thousand seven hundred sixty-two
b) $85,46,283=$ Eight-five lakh forty-six thousand two hundred eighty-three
c) $9,99,00,046=$ Nine crore ninety-nine lakh forty-six
d) $9,84,32,701=$ Nine crore eighty-four lakh thirty-two thousand seven hundred one

Question 4:

Insert commas suitable and write the names according to International system of numeration:
a) 78921092
b) 7452283
c) 99985102
d) 48049831

Answer 4:

a) $78,921,092=$ Seventy-eight million nine hundred twenty-one thousand ninety-two
b) $7,452,483=$ Seven million four hundred fifty-two thousand two hundred eighty-three
c) $99,985,102=$ Ninety-nine million nine hundred eighty-five thousand one hundred two
d) $48,049,831=$ Forty-eight million forty-nine thousand eight hundred thirty-one

Exercise 1.2

Question 1:

A book exhibition was held for four days in a school. The number of tickets sold at the counter on the first, second, third and final day was respectively 1094, 1812, 2050 and 2751. Find the total number of tickets sold on all the four days.

Answer 1:

Number of tickets sold on first day $=1,094$
Number of tickets sold on second day $=1,812$
Number of tickets sold on third day $=2,050$
Number of tickets sold on fourth day $=+2,751$
Total tickets sold
$=7,707$
Therefore, 7,707 tickets were sold on all the four days.

Question 2:

Shekhar is a famous cricket player. He has so far scored 6980 runs in test matches. He wishes to complete 10,000 runs. How many more runs does he need?

Answer 2:

Runs to achieve $=10,000$
Runs scored $=-\underline{-6,980}$
Runs required $=3,020$
Therefore, he needs 3,020 more runs.

Question 3:

In an election, the successful candidate registered 5,77,500 votes and his nearest rival secured $3,48,700$ votes. By what margin did the successful candidate win the election?

Answer 3:

Number of votes secured by successful candidates $=5,77,500$
Number of votes secured by his nearest rival $=-3,48,700$
Margin between them
$=2,28,800$
Therefore, the successful candidate won by a margin of $2,28,800$ votes.

Question 4:

Kirti Bookstore sold books worth ₹ $2,85,891$ in the first week of June and books worth ₹ $4,00,768$ in the second week of the month. How much was the sale for the two weeks together? In which week was the sale greater and by how much?

Answer 4:

Books sold in first week $=2,85,891$
Books sold in second week $=+4,00,768$
Total books sold $=\underline{6,86,659}$
Since, 4,00,768,> 2,85,891
Therefore sale of second week is greater than that of first week.
Books sold in second week $=4,00,768$
Books sold in first week $=-2,85,891$
More books sold in second week $=1,14,877$
Therefore, 1,14,877 more books were sold in second week.

Question 5:

Find the difference between the greatest and the least number that can be written using the digits $6,2,7,4,3$ each only once.

Answer 5:

Greatest five-digit number using digits 6,2,7,4,3 = 76432
Smallest five-digit number using digits 6,2,7,4,3 $=-23467$
Difference
$=52965$
Therefore the difference is 52965.

Question 6:

A machine, on an average, manufactures 2,825 screws a day. How many screws did it produce in the month of January 2006?

Answer 6:

Number of screws manufactured in one day $\quad=2,825$
Number of days in the month of January (31 days) $=2,825 \times 31$

$$
=87,575
$$

Therefore the machine produced 87,575 screws in the month of January.

Question 7:

A merchant had ₹78,592 with her. She placed an order for purchasing 40 radio sets at ₹1,200 each. How much money will remain with her after the purchase?

Answer 7:

Cost of one radio

$$
\text { Cost of } 40 \text { radios }=1200 \times 40
$$

$$
\begin{array}{ll}
= & ₹ 1200 \\
= & ₹ 48,000 \\
= & ₹ 78,592 \\
= & -₹ 48,000 \\
= & ₹ 30,592 \\
\hline
\end{array}
$$

Now, Total money with merchant
Money spent by her
Money left with her
Therefore, ₹30,592 will remain with her after the purchase

Question 8:

A student multiplied 7236 by 65 instead of multiplying by 56 . By how much was his answer greater than the correct answer?

Answer 8:

Wrong answer $=7236 \times 65$

$$
\text { Correct answer }=7236 \times 56
$$

7236
7236

$\times \quad 65$

$\times \quad 56$

36180
43416
43416x $\quad \underline{36180 x}$
470340

$$
405216
$$

Difference in answers $=470340-405216$
= 65,124

Question 9:

To stitch a shirt 2 m 15 cm cloth is needed. Out of 40 m cloth, how many shirts can be stitched and how much cloth will remain?

Answer 9:

Cloth required to stitch one shirt $=2 \mathrm{~m} 15 \mathrm{~cm}$

$$
\begin{aligned}
& =2 \times 100 \mathrm{~cm}+15 \mathrm{~cm} \\
& =215 \mathrm{~cm}
\end{aligned}
$$

Length of cloth $=40 \mathrm{~m}=40 \times 100 \mathrm{~cm}=4000 \mathrm{~cm}$
Number of shirts can be stitched $=4000 \div 215$

18
2154000 $-\quad 215$ 1850 -1720 130

Therefore, 18 shirts can be stitched and $130 \mathrm{~cm}(1 \mathrm{~m} 30 \mathrm{~cm}$) cloth will remain.

Question 10:

Medicine is packed in boxes, each weighing 4 kg 500 g . How many such boxes can be loaded in a can which cannot carry beyond 800 kg ?

Answer 10:

The weight of one box $\quad=4 \mathrm{~kg} \mathrm{500g}=4 \times 1000 \mathrm{~g}+500 \mathrm{~g}=4500 \mathrm{~g}$
Maximum load can be loaded in van $=800 \mathrm{~kg}=800 \times 1000 \mathrm{~g}=800000 \mathrm{~g}$
Number of boxes $=800000 \div 45006$

177	
4500	800000
	- 4500
	35000
	- 31500
	35000
	- 31500
	3500

Therefore, 177 boxes can be loaded.

Question 11:

The distance between the school and the house of a student's house is 1 km 875 m . Everyday she walks both ways. Find the total distance covered by her in six days.

Answer 11:

Distance between school and home $=1.875 \mathrm{~km}$
Distance between home and school $=+1.875 \mathrm{~km}$
Total distance covered in one day $=3.750 \mathrm{~km}$
Distance covered in six days $=3.750 \times 6$

$$
=22.500 \mathrm{~km}
$$

Therefore, 22 km 500 m distance covered in six days.

Question 12:

A vessel has 4 liters and 500 ml of curd. In how many glasses each of 25 ml capacity, can it be filled?

Answer 12:

Capacity of curd in a vessel $=4$ liters $500 \mathrm{ml}=4 \times 1000 \mathrm{ml}+500 \mathrm{ml}=4500 \mathrm{ml}$
Capacity of one glass $=25 \mathrm{ml}$
Number of glasses can be filled $=4500 \div 25$

Therefore, 180 glasses can be filled by curd.

Exercise 1.3

Question 1:

Estimate each of the following using general rule:
a) $730+998$
b) 796-314
c) $12,904+2,888$
d) $28,292-21,496$

Answer 1:

a)	730 round off to		700
	998 round off to		$\underline{1000}$
	Estimated sum	=	1700
b)	796 round off to		800
	314 round off to		300
	Estimated sum	=	500
c)	12904 round off to		13000
	2888 round off to		3000
	Estimated sum	=	16000
d)	28292 round off to		28000
	21496 round off to		$\underline{21000}$
	Estimated difference	=	7000

Question 2:

Give a rough estimate (by rounding off to nearest hundreds) and also a closer estimate (by rounding off to nearest tens):
a) $439+334+4317$
b) $1,08,737-47,599$
c) 8325-491
d) $4,89,348-48,365$

Answer 2:

a) 439 round off to
400
334 round off to 300
4317 round off to $\underline{4300}$
Estimated sum $=\underline{5000}$
b) 108734 round off to 108700

47599 round off to $\quad \underline{47600}$
Estimated difference $=\underline{61100}$
c) 8325 round off to 8300

491 round off to $\quad \underline{500}$
Estimated difference $=\underline{7800}$
d) 489348 round off to 489300

48365 round off to $\quad 48400$
Estimated difference $=\underline{440900}$

Question 3:

Estimate the following products using general rule:
a) 578×161
b) 5281×3491
c) 1291×592
d) 9250×29

Answer 3:

a) 578×161

578 round off to 600
161 round off to 200
The estimated product $=600 \times 200=1,20,000$
b) 5281×3491

5281 round of to 5,000
3491 round off to 3,500
The estimated product $=5,000 \times 3,500=1,75,00,000$
c) 1291×592

1291 round off to 1300
592 round off to 600
The estimated product $=1300 \times 600=7,80,000$
d) 9250×29

9250 round off to 10,000
229 round off to 30
The estimated product $=10,000 \times 30=3,00,000$

